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Once Upon a Time

Overengineering

xarkes: hey guys, why don’t you write the last step of this
year’s challenge?

(freely translated and edited)

Guidelines :

Reverse challenge

Last step⇒ should be... tedious challenging !

No guess

Idea : force people to use tools because it’s the future, bro

Focus on automation, not on efficient manual analysis

Prevent trivial attacks

Miasm should not be the only viable solution (tough one)

There should be some hype at the end
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More is more

Overengineering

Implementation :

Loads of binaries (let’s say 1337)

4 architectures : x86, x86_64, ARM, AARCH64

2 OS : Windows, Linux

ARM and AARCH64 are linux only, and there are fewer of them (5 of each)

Each binary is a different equation to solve

Each binary has its own packer

Validator is an unnecessary concurrent rust source code
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Inspiration

Overengineering

Misc

Inspired by the DefCon 2017 challenge

Should not be solvable with grep

We really hope it wasn’t...

objdump -M intel -d magic/* | grep -P ”cmp\s+rdi”\
| grep -oP ”0x\w{1,2}” | xxd -r -p

objdump -M intel -d sorcery/* | grep -P ” 3\w{3}.*cmp\s+[ac]l”\
| grep -oP ”0x\w{1,2}” | xxd -r -p

objdump -M intel -d alchemy/* | grep -P ” 4[012]\w{4}:.*cmp\s+r[ac]x,0x\w{2}$”\
| grep -oP ”0x\w{1,2}” | xxd -r -p

objdump -M intel -d witchcraft/* | grep -P ”[add|sub|cmp]\s+rdi,0x”\
| cut -c33-80 | sed ’s/ /,/’ | python parser.py

Source : https ://github.com/sinfocol/ctfs
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Producing equations

Overengineering

Approach 1 : smart way

Produce a function f with one and only one value x such that f(x) = 0

Apply reversible transformation, expand, reduce, …

Do it 1337 times

Approach 2 : lazy way
Brute-force random equations

Ask a SMT solver for the one and only one answer constraint

→ we have a winner !

Do it 1337 times
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Producing equations

Overengineering

Implementation
Operations in the 2n bit world→ Miasm IR !

Start with the input, apply random operations with random constants to
produces intermediates variables

Mix these intermediate variables together with random operations

Evaluate the sum of all variables (final equation) with one random value

Ask z3 (through Miasm) if there is only one way of getting this result

Save the input for later (expected input)

Translate to C (Miasm IR→ (unreadable) C)
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Misc

Overengineering

Avoid common attacks
Avoid brute-force : input is 64 bits

Patterns are random to avoid “grep attack”

Avoid too easy tracing : insert randoms checks to avoid full equation dumping
in one run

uint64_t test(uint64_t x) {
uint64_t var0, var1, var2, var3, var4, var5, var6, var7, var8, var9;
var0 = (x^x);
var1 = (0x2BECFB880A6B7B72+var0);
var2 = (var1+0x620D004B294BA344);
if ((var1 & 0x2040080405110022) != 0x2040080000010022) return -1;
var3 = (var2+var0);
var4 = (0x671F8D008D0800D|var3);
var5 = (var3&0x6E67FB8012DA33A);
var6 = (var2+(- var5));
var7 = (var4|0xC98A8C805C4FF93C);
var8 = (var6|var0);
if ((var8 & 0x608100018209001) != 0x8000010001000) return -1;
var9 = (0x27A81200F061A58B+(- var3));
return x + var0 + var1 + var2 + var3 + var4 + var5 + var6 + var7 + var8 + var9 - 0x8738A051601EC7DE;

}
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Multiple tools

Overengineering

Several tools could be used
Only a few challenges on ARM / AARCH64 : do-able by hand

No float, no (too) exotic opcodes, no loops, …

(probably) suitable tools
Triton
Manticore
Angr
Miasm
…

Working methods (on Miasm)
Symbolic execution with state splitting

Dynamic Symbolic Execution

Dependency Graph
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Packers

Overengineering

Cross platform polymorphic packer (the dumb way)

Take a pre-compiled equation function

Python script generates a random packer for it
Has a list of inversible operation : xor/xor, rol/ror, +/-…

Picks an operator size (1, 2, 4 or 8 bytes)
Generates a list of packing and corresponding unpacking operations
Generates an ad-hoc C unpacker as it packs the original binary code

The packer just mmaps, unpacks, mprotects and executes the equation code

Also cleans up its mess (bzero and munmap), we’re kind of doing quality dev
here
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Packers

Overengineering

void unpack(ptype *buf)
{

ptype *from, *to, c;
for (from = packed, to = buf; (char *)from < (char *)packed + packed_size;

from++, to++) {
c = *from;
c = rotr(c, 0xe);
c = rotr(c, 0x1);
c = c + 0x4b1bc27c;
c = c - 0x457bc3da;
c = c - 0x1823cae2;
c = rotr(c, 0x1d);
c = c ^ 0xaa907f80;
c = c - 0x40f0f8b5;
[...]
c = rotr(c, 0xd);
c = rotl(c, 0x1e);
*to = c;

}
}
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Packers

Overengineering

Built to be bypassed

Each of the 1337 packers is different

“Highly” obfuscated (O-LLVM with all options)

Not meant for static analysis

Simple bypass : breaking on mprotect/VirtualProtect
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Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :

1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator
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Harder is better

Overengineering

For GreHack 2018 (or maybe tonight?)

Loops in the equation

Heavy equation obfuscation

Anti-emulation tricks

Anti symbolic execution tricks
a = b ⇒ b=0; for (i=0;i<a;i++) b++

Rarely supported architectures (sh4, msp430…)

…
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Xor all the numbers -> gives an encryption key

3 Decrypt the flag
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Xor all the numbers -> gives an encryption key

3 Decrypt the flag with ChaCha20
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number

3 Xor all the hashes -> gives an encryption key

4 Decrypt the flag with ChaCha20
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number concurrently with a pool of threads

3 Xor all the hashes with a global lock -> gives an encryption key

4 Decrypt the flag with ChaCha20
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number concurrently with a pool of threads

3 Xor all the hashes with atomic operations -> gives an encryption key

4 Decrypt the flag with ChaCha20
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number concurrently with a pool of threads

3 Xor all the hashes with atomic operations -> gives an encryption key

4 Check that the “relaxed” ordering does not create bugs with ARM

5 Decrypt the flag with ChaCha20
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Ensure that we don’t malloc a buffer for every line of the file (zero copy
parsing)

3 Hash (sha256) each number concurrently with a pool of threads

4 Xor all the hashes with atomic operations -> gives an encryption key

5 Check that the “relaxed” ordering does not create bugs with ARM

6 Decrypt the flag with ChaCha20
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Overengineered Validator

Overengineering

Validation process:
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3 Hash (sha256) each number concurrently with a pool of threads
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7 Make sure we used a nightly only feature (atomic integers)
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3 Hash (sha256) each number concurrently with a pool of threads
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Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Ensure that we don’t malloc a buffer for every line of the file (zero copy parsing)

3 Hash (sha256) each number concurrently with a pool of threads

4 Xor all the hashes with atomic operations -> gives an encryption key

5 Check that the “relaxed” ordering does not create bugs with ARM

6 Decrypt the unicode (not only ascii) flag with ChaCha20

7 Make sure we used a nightly only feature (atomic integers)

8 All of this in Rust, for safety and performance sakes
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Overengineered Validator

Overengineering

Last step : enjoy refreshing the scoreboard.

Thank you!
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