
Overengineered : 1337 * crackme-
100
Generated by machines for machines

Camille MOUGEY Florent MONJALET

Commissariat à l’Énergie Atomique et aux Énergies alternatives
Direction des Applications Militaires

17 novembre 2017

Once Upon a Time

Overengineering

xarkes: hey guys, why don’t you write the last step of this
year’s challenge?

(freely translated and edited)

Guidelines :

Reverse challenge

Last step⇒ should be... tedious challenging !

No guess

Idea : force people to use tools because it’s the future, bro

Focus on automation, not on efficient manual analysis

Prevent trivial attacks

Miasm should not be the only viable solution (tough one)

There should be some hype at the end

CEA/DAM | 17 novembre 2017 | PAGE 2/25

Once Upon a Time

Overengineering

xarkes: hey guys, why don’t you write the last step of this
year’s challenge?

(freely translated and edited)

Guidelines :

Reverse challenge

Last step⇒ should be... tedious challenging !

No guess

Idea : force people to use tools because it’s the future, bro

Focus on automation, not on efficient manual analysis

Prevent trivial attacks

Miasm should not be the only viable solution (tough one)

There should be some hype at the end

CEA/DAM | 17 novembre 2017 | PAGE 2/25

Once Upon a Time

Overengineering

xarkes: hey guys, why don’t you write the last step of this
year’s challenge?

(freely translated and edited)

Guidelines :

Reverse challenge

Last step⇒ should be... tedious challenging !

No guess

Idea : force people to use tools because it’s the future, bro

Focus on automation, not on efficient manual analysis

Prevent trivial attacks

Miasm should not be the only viable solution (tough one)

There should be some hype at the end

CEA/DAM | 17 novembre 2017 | PAGE 2/25

More is more

Overengineering

Implementation :

Loads of binaries (let’s say 1337)

4 architectures : x86, x86_64, ARM, AARCH64

2 OS : Windows, Linux

ARM and AARCH64 are linux only, and there are fewer of them (5 of each)

Each binary is a different equation to solve

Each binary has its own packer

Validator is an unnecessary concurrent rust source code

CEA/DAM | 17 novembre 2017 | PAGE 3/25

Inspiration

Overengineering

Misc

Inspired by the DefCon 2017 challenge

Should not be solvable with grep

We really hope it wasn’t...

objdump -M intel -d magic/* | grep -P ”cmp\s+rdi”\
| grep -oP ”0x\w{1,2}” | xxd -r -p

objdump -M intel -d sorcery/* | grep -P ” 3\w{3}.*cmp\s+[ac]l”\
| grep -oP ”0x\w{1,2}” | xxd -r -p

objdump -M intel -d alchemy/* | grep -P ” 4[012]\w{4}:.*cmp\s+r[ac]x,0x\w{2}$”\
| grep -oP ”0x\w{1,2}” | xxd -r -p

objdump -M intel -d witchcraft/* | grep -P ”[add|sub|cmp]\s+rdi,0x”\
| cut -c33-80 | sed ’s/ /,/’ | python parser.py

Source : https ://github.com/sinfocol/ctfs

CEA/DAM | 17 novembre 2017 | PAGE 4/25

Producing equations

Overengineering

Approach 1 : smart way

Produce a function f with one and only one value x such that f(x) = 0

Apply reversible transformation, expand, reduce, …

Do it 1337 times

Approach 2 : lazy way
Brute-force random equations

Ask a SMT solver for the one and only one answer constraint

→ we have a winner !

Do it 1337 times

CEA/DAM | 17 novembre 2017 | PAGE 5/25

Producing equations

Overengineering

Approach 1 : smart way

Produce a function f with one and only one value x such that f(x) = 0

Apply reversible transformation, expand, reduce, …

Do it 1337 times

Approach 2 : lazy way
Brute-force random equations

Ask a SMT solver for the one and only one answer constraint

→ we have a winner !

Do it 1337 times

CEA/DAM | 17 novembre 2017 | PAGE 5/25

Producing equations

Overengineering

Approach 1 : smart way

Produce a function f with one and only one value x such that f(x) = 0

Apply reversible transformation, expand, reduce, …

Do it 1337 times

Approach 2 : lazy way
Brute-force random equations

Ask a SMT solver for the one and only one answer constraint

→ we have a winner !

Do it 1337 times

CEA/DAM | 17 novembre 2017 | PAGE 5/25

Producing equations

Overengineering

Implementation
Operations in the 2n bit world→ Miasm IR !

Start with the input, apply random operations with random constants to
produces intermediates variables

Mix these intermediate variables together with random operations

Evaluate the sum of all variables (final equation) with one random value

Ask z3 (through Miasm) if there is only one way of getting this result

Save the input for later (expected input)

Translate to C (Miasm IR→ (unreadable) C)

CEA/DAM | 17 novembre 2017 | PAGE 6/25

Producing equations

Overengineering

Implementation
Operations in the 2n bit world→ Miasm IR !

Start with the input, apply random operations with random constants to
produces intermediates variables

Mix these intermediate variables together with random operations

Evaluate the sum of all variables (final equation) with one random value

Ask z3 (through Miasm) if there is only one way of getting this result

Save the input for later (expected input)

Translate to C (Miasm IR→ (unreadable) C)

CEA/DAM | 17 novembre 2017 | PAGE 6/25

Producing equations

Overengineering

Implementation
Operations in the 2n bit world→ Miasm IR !

Start with the input, apply random operations with random constants to
produces intermediates variables

Mix these intermediate variables together with random operations

Evaluate the sum of all variables (final equation) with one random value

Ask z3 (through Miasm) if there is only one way of getting this result

Save the input for later (expected input)

Translate to C (Miasm IR→ (unreadable) C)

CEA/DAM | 17 novembre 2017 | PAGE 6/25

Producing equations

Overengineering

Implementation
Operations in the 2n bit world→ Miasm IR !

Start with the input, apply random operations with random constants to
produces intermediates variables

Mix these intermediate variables together with random operations

Evaluate the sum of all variables (final equation) with one random value

Ask z3 (through Miasm) if there is only one way of getting this result

Save the input for later (expected input)

Translate to C (Miasm IR→ (unreadable) C)

CEA/DAM | 17 novembre 2017 | PAGE 6/25

Producing equations

Overengineering

Implementation
Operations in the 2n bit world→ Miasm IR !

Start with the input, apply random operations with random constants to
produces intermediates variables

Mix these intermediate variables together with random operations

Evaluate the sum of all variables (final equation) with one random value

Ask z3 (through Miasm) if there is only one way of getting this result

Save the input for later (expected input)

Translate to C (Miasm IR→ (unreadable) C)

CEA/DAM | 17 novembre 2017 | PAGE 6/25

Producing equations

Overengineering

Implementation
Operations in the 2n bit world→ Miasm IR !

Start with the input, apply random operations with random constants to
produces intermediates variables

Mix these intermediate variables together with random operations

Evaluate the sum of all variables (final equation) with one random value

Ask z3 (through Miasm) if there is only one way of getting this result

Save the input for later (expected input)

Translate to C (Miasm IR→ (unreadable) C)

CEA/DAM | 17 novembre 2017 | PAGE 6/25

Misc

Overengineering

Avoid common attacks
Avoid brute-force : input is 64 bits

Patterns are random to avoid “grep attack”

Avoid too easy tracing : insert randoms checks to avoid full equation dumping
in one run

uint64_t test(uint64_t x) {
uint64_t var0, var1, var2, var3, var4, var5, var6, var7, var8, var9;
var0 = (x^x);
var1 = (0x2BECFB880A6B7B72+var0);
var2 = (var1+0x620D004B294BA344);
if ((var1 & 0x2040080405110022) != 0x2040080000010022) return -1;
var3 = (var2+var0);
var4 = (0x671F8D008D0800D|var3);
var5 = (var3&0x6E67FB8012DA33A);
var6 = (var2+(- var5));
var7 = (var4|0xC98A8C805C4FF93C);
var8 = (var6|var0);
if ((var8 & 0x608100018209001) != 0x8000010001000) return -1;
var9 = (0x27A81200F061A58B+(- var3));
return x + var0 + var1 + var2 + var3 + var4 + var5 + var6 + var7 + var8 + var9 - 0x8738A051601EC7DE;

}

CEA/DAM | 17 novembre 2017 | PAGE 7/25

Misc

Overengineering

Avoid common attacks
Avoid brute-force : input is 64 bits

Patterns are random to avoid “grep attack”

Avoid too easy tracing : insert randoms checks to avoid full equation dumping
in one run

uint64_t test(uint64_t x) {
uint64_t var0, var1, var2, var3, var4, var5, var6, var7, var8, var9;
var0 = (x^x);
var1 = (0x2BECFB880A6B7B72+var0);
var2 = (var1+0x620D004B294BA344);
if ((var1 & 0x2040080405110022) != 0x2040080000010022) return -1;
var3 = (var2+var0);
var4 = (0x671F8D008D0800D|var3);
var5 = (var3&0x6E67FB8012DA33A);
var6 = (var2+(- var5));
var7 = (var4|0xC98A8C805C4FF93C);
var8 = (var6|var0);
if ((var8 & 0x608100018209001) != 0x8000010001000) return -1;
var9 = (0x27A81200F061A58B+(- var3));
return x + var0 + var1 + var2 + var3 + var4 + var5 + var6 + var7 + var8 + var9 - 0x8738A051601EC7DE;

}

CEA/DAM | 17 novembre 2017 | PAGE 7/25

Multiple tools

Overengineering

Several tools could be used
Only a few challenges on ARM / AARCH64 : do-able by hand

No float, no (too) exotic opcodes, no loops, …

(probably) suitable tools
Triton
Manticore
Angr
Miasm
…

Working methods (on Miasm)
Symbolic execution with state splitting

Dynamic Symbolic Execution

Dependency Graph

CEA/DAM | 17 novembre 2017 | PAGE 8/25

Packers

Overengineering

Cross platform polymorphic packer (the dumb way)

Take a pre-compiled equation function

Python script generates a random packer for it
Has a list of inversible operation : xor/xor, rol/ror, +/-…

Picks an operator size (1, 2, 4 or 8 bytes)
Generates a list of packing and corresponding unpacking operations
Generates an ad-hoc C unpacker as it packs the original binary code

The packer just mmaps, unpacks, mprotects and executes the equation code

Also cleans up its mess (bzero and munmap), we’re kind of doing quality dev
here

CEA/DAM | 17 novembre 2017 | PAGE 9/25

Packers

Overengineering

Cross platform polymorphic packer (the dumb way)

Take a pre-compiled equation function

Python script generates a random packer for it
Has a list of inversible operation : xor/xor, rol/ror, +/-…
Picks an operator size (1, 2, 4 or 8 bytes)

Generates a list of packing and corresponding unpacking operations
Generates an ad-hoc C unpacker as it packs the original binary code

The packer just mmaps, unpacks, mprotects and executes the equation code

Also cleans up its mess (bzero and munmap), we’re kind of doing quality dev
here

CEA/DAM | 17 novembre 2017 | PAGE 9/25

Packers

Overengineering

Cross platform polymorphic packer (the dumb way)

Take a pre-compiled equation function

Python script generates a random packer for it
Has a list of inversible operation : xor/xor, rol/ror, +/-…
Picks an operator size (1, 2, 4 or 8 bytes)
Generates a list of packing and corresponding unpacking operations

Generates an ad-hoc C unpacker as it packs the original binary code

The packer just mmaps, unpacks, mprotects and executes the equation code

Also cleans up its mess (bzero and munmap), we’re kind of doing quality dev
here

CEA/DAM | 17 novembre 2017 | PAGE 9/25

Packers

Overengineering

Cross platform polymorphic packer (the dumb way)

Take a pre-compiled equation function

Python script generates a random packer for it
Has a list of inversible operation : xor/xor, rol/ror, +/-…
Picks an operator size (1, 2, 4 or 8 bytes)
Generates a list of packing and corresponding unpacking operations
Generates an ad-hoc C unpacker as it packs the original binary code

The packer just mmaps, unpacks, mprotects and executes the equation code

Also cleans up its mess (bzero and munmap), we’re kind of doing quality dev
here

CEA/DAM | 17 novembre 2017 | PAGE 9/25

Packers

Overengineering

Cross platform polymorphic packer (the dumb way)

Take a pre-compiled equation function

Python script generates a random packer for it
Has a list of inversible operation : xor/xor, rol/ror, +/-…
Picks an operator size (1, 2, 4 or 8 bytes)
Generates a list of packing and corresponding unpacking operations
Generates an ad-hoc C unpacker as it packs the original binary code

The packer just mmaps, unpacks, mprotects and executes the equation code

Also cleans up its mess (bzero and munmap), we’re kind of doing quality dev
here

CEA/DAM | 17 novembre 2017 | PAGE 9/25

Packers

Overengineering

void unpack(ptype *buf)
{

ptype *from, *to, c;
for (from = packed, to = buf; (char *)from < (char *)packed + packed_size;

from++, to++) {
c = *from;
c = rotr(c, 0xe);
c = rotr(c, 0x1);
c = c + 0x4b1bc27c;
c = c - 0x457bc3da;
c = c - 0x1823cae2;
c = rotr(c, 0x1d);
c = c ^ 0xaa907f80;
c = c - 0x40f0f8b5;
[...]
c = rotr(c, 0xd);
c = rotl(c, 0x1e);
*to = c;

}
}

CEA/DAM | 17 novembre 2017 | PAGE 10/25

Packers

Overengineering

Built to be bypassed

Each of the 1337 packers is different

“Highly” obfuscated (O-LLVM with all options)

Not meant for static analysis

Simple bypass : breaking on mprotect/VirtualProtect

CEA/DAM | 17 novembre 2017 | PAGE 11/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :

1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :

1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator

CEA/DAM | 17 novembre 2017 | PAGE 12/25

Build Chain and Quality Assessment

Overengineering

The build should be automated : for x86 and x86_64 Windows and Linux, as well
as ARM and AARCH64 linux

Packing and compilation for all targets

Compilation for all targets with O-LLVM
Test every equation binary (wine and qemu)

The process :
1 Generate a random equation in C and store its solution

2 Compile and obfuscate slightly (O-LLVM instruction substitution)

3 Extract equation function

4 Pack it and generate unpacker in C

5 Strip and obfuscate heavily (O-LLVM bogus control flow, control flow flattening,
instruction substitution)

6 Test that it works

7 Repeat 1337 times, of course

8 Update the validator to suit the equations generated

9 Compile and test validator CEA/DAM | 17 novembre 2017 | PAGE 12/25

Harder is better

Overengineering

For GreHack 2018 (or maybe tonight?)

Loops in the equation

Heavy equation obfuscation

Anti-emulation tricks

Anti symbolic execution tricks
a = b ⇒ b=0; for (i=0;i<a;i++) b++

Rarely supported architectures (sh4, msp430…)

…

CEA/DAM | 17 novembre 2017 | PAGE 13/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Xor all the numbers -> gives an encryption key

3 Decrypt the flag

CEA/DAM | 17 novembre 2017 | PAGE 14/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Xor all the numbers -> gives an encryption key

3 Decrypt the flag with ChaCha20

CEA/DAM | 17 novembre 2017 | PAGE 15/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number

3 Xor all the hashes -> gives an encryption key

4 Decrypt the flag with ChaCha20

CEA/DAM | 17 novembre 2017 | PAGE 16/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number concurrently with a pool of threads

3 Xor all the hashes with a global lock -> gives an encryption key

4 Decrypt the flag with ChaCha20

CEA/DAM | 17 novembre 2017 | PAGE 17/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number concurrently with a pool of threads

3 Xor all the hashes with atomic operations -> gives an encryption key

4 Decrypt the flag with ChaCha20

CEA/DAM | 17 novembre 2017 | PAGE 18/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Hash (sha256) each number concurrently with a pool of threads

3 Xor all the hashes with atomic operations -> gives an encryption key

4 Check that the “relaxed” ordering does not create bugs with ARM

5 Decrypt the flag with ChaCha20

CEA/DAM | 17 novembre 2017 | PAGE 19/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Ensure that we don’t malloc a buffer for every line of the file (zero copy
parsing)

3 Hash (sha256) each number concurrently with a pool of threads

4 Xor all the hashes with atomic operations -> gives an encryption key

5 Check that the “relaxed” ordering does not create bugs with ARM

6 Decrypt the flag with ChaCha20

CEA/DAM | 17 novembre 2017 | PAGE 20/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Ensure that we don’t malloc a buffer for every line of the file (zero copy parsing)

3 Hash (sha256) each number concurrently with a pool of threads

4 Xor all the hashes with atomic operations -> gives an encryption key

5 Check that the “relaxed” ordering does not create bugs with ARM

6 Decrypt the flag with ChaCha20

7 Make sure we used a nightly only feature (atomic integers)

CEA/DAM | 17 novembre 2017 | PAGE 21/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Ensure that we don’t malloc a buffer for every line of the file (zero copy parsing)

3 Hash (sha256) each number concurrently with a pool of threads

4 Xor all the hashes with atomic operations -> gives an encryption key

5 Check that the “relaxed” ordering does not create bugs with ARM

6 Decrypt the unicode (not only ascii) flag with ChaCha20

7 Make sure we used a nightly only feature (atomic integers)

CEA/DAM | 17 novembre 2017 | PAGE 22/25

Overengineered Validator

Overengineering

Validation process:

1 Read a file with all the equation solutions (64 bit hex numbers)

2 Ensure that we don’t malloc a buffer for every line of the file (zero copy parsing)

3 Hash (sha256) each number concurrently with a pool of threads

4 Xor all the hashes with atomic operations -> gives an encryption key

5 Check that the “relaxed” ordering does not create bugs with ARM

6 Decrypt the unicode (not only ascii) flag with ChaCha20

7 Make sure we used a nightly only feature (atomic integers)

8 All of this in Rust, for safety and performance sakes

CEA/DAM | 17 novembre 2017 | PAGE 23/25

Overengineered Validator

Overengineering

Last step : enjoy refreshing the scoreboard.

Thank you!

CEA/DAM | 17 novembre 2017 | PAGE 24/25

Commissariat à l’énergie atomique et aux énergies alternatives
Centre de Bruyères-le-Châtel | 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00 | F. +33 (0)1 69 26 40 00
Établissement public à caractère industriel et commercial
RCS Paris B 775 685 019

CEA/DAM

	Overengineering

